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Autonomous Hamiltonian systems 

Consider an N degree of freedom autonomous 

Hamiltonian system having a Hamiltonian function of the 

form: 
 

H(q1,q2,…,qN, p1,p2,…,pN) 

The time evolution of an orbit (trajectory) with initial 

condition 

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0)) 

positions momenta 

is governed by the Hamilton’s equations of motion 
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Symplectic Integration schemes 
Formally the solution of the Hamilton equations of motion can be written 
as: 

where     is the full coordinate vector and LH the Poisson operator: X
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If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           by HτL

e

for appropriate values of constants ci, di. This is an integrator of order n. 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.  
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Symplectic Integrator SABA2C 
The operator        can be approximated by the symplectic integrator 

[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]: 
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The integrator has only small positive steps and its error is of order 2. 

In the case where A is quadratic in the momenta and B depends only on 

the positions the method can be improved by introducing a corrector C, 

having a small negative step: 
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c
- L

2C = e
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with  

Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its 

error is of order 4. 
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Interplay of disorder and nonlinearity 
Waves in disordered media – Anderson localization 

[Anderson, Phys. Rev. (1958)]. Experiments on BEC 

[Billy et al., Nature (2008)]  

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) - Pikovsky & 

Shepelyansky, PRL (2008) - Kopidakis et al., PRL (2008) - 

Flach et al., PRL (2009) - Ch.S. et al., PRE (2009) - Ch.S. & 

Flach, PRE (2010) – Laptyeva et al., EPL (2010) - Bodyfelt et 

al., PRE (2011) - Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL, (2008)] 



The Klein – Gordon (KG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The discrete nonlinear Schrödinger (DNLS) equation 
We also consider the system: 
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Conserved quantities: The energy and the norm                     of the wave 

packet. 
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Distribution characterization 
We consider normalized energy distributions in normal mode (NM) space  

of the νth NM. 
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Different spreading regimes 



The KG model 
We apply the SABAC2 integrator scheme to the KG Hamiltonian by using 

the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 
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The DNLS model 
A 2nd order SABA Symplectic Integrator with 5 steps, combined with 

approximate solution for the B part (Fourier Transform): SIFT2  
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The DNLS model 
Symplectic Integrators produced by Successive Splits (SS)  
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Using the SABA2 integrator we get a 2nd order integrator with 13 

steps, SS2: 
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Non-symplectic methods for the 

DNLS model 

In our study we also use the DOP853 integrator which is 

an explicit non-symplectic Runge-Kutta integration 

scheme of order 8. 

 
DOP853: Hairer et al. 1993, 

http://www.unige.ch/~hairer/software.html 

 



Three part split symplectic 

integrators for the DNLS model 

Three part split symplectic integrator of order 2, with 5 

steps: ABC2 

A B B A
C

τ τ τ τ
L L L L

τL2 2 2 2 2ABC =  e  e  e  e  e

This low order integrator has already been used by e.g. Chambers, MNRAS 

(1999) – Goździewski et al., MNRAS (2008). 
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2nd order integrators: Numerical results 

ABC2 τ=0.005 

SS2 τ=0.02 

SIFT2 τ=0.05 

DOP853 δ=10-16 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 



4th order symplectic integrators 

Starting with the 2nd order integrators SS2 and ABC2 we 

construct the 4th order integrators: 

•SS4 with 37 steps 

•ABC4 with 13 steps 

Starting from any 2nd order symplectic integrator S2nd, we can 

construct a 4th order integrator S4th using a composition 

method [Yoshida, Phys. Let. A (1990)]: 

4th 2nd 2nd 2nd

1 0 1

1/3

0 11/3 1/3

S (τ) = S (x τ)×S (x τ)×S (x τ)

2 1
      x = - ,       x =

2 - 2 2 - 2



6th order symplectic integrators 

whose coefficients 

 

As a higher order integrator, we use the 6th order symplectic 

integrator ABC6 having 29 steps [Yoshida, Phys. Let. A 

(1990)]: 

2 2 2

2 2 2 2

6

3 2 1

0 1 2 3

ABC (τ) = ABC (w τ)× ABC (w τ)× ABC (w τ)×

   × ABC (w τ)× ABC (w τ)× ABC (w τ)× ABC (w τ)

 

1

2

3

0 1 2 3

      w = -1.17767998417887

      w = 0.235573213359357

      w = 0.784513610477560

      w = 1- 2(w w w )

cannot be given in analytic form. 

 



High order integrators: Numerical results 

SIFT2 τ=0.05 

SS4 τ=0.1 

ABC4 τ=0.05 

ABC6  τ=0.15 

 

 

Er: relative energy 

error 

Sr: relative norm 

error 



Summary 
• We presented several efficient integration methods suitable for the 

integration of the DNLS model, which are based on symplectic 
integration techniques. 

• The construction of symplectic schemes based on 3 part split of the 
Hamiltonian was emphasized (ABC methods).  

• A systematic way of constructing high order ABC integrators was 
presented.  

• The 4th and 6th order integrators proved to be quite efficient, 
allowing integration of the DNLS for very long times.  

• We hope that our results will initiate future research both for the 
theoretical development of new, improved 3 part split integrators, as 
well as for their applications to different dynamical systems. 

Ch.S., Gerlach, Bodyfelt, Papamikos, Eggl (2013)  
arXiv:1302.1788 


